Experimental measurement and computational fluid dynamics simulation of mixing in a stirred tank: a review

نویسندگان

  • A. Ochieng
  • M. Onyango
  • K. Kiriamiti
چکیده

Introduction Mixing in stirred tanks is driven by the impeller-generated convective motion at larger scales, by turbulent transfer at smaller scales and diffusion at molecular scales. Smith reported that the lack of a fundamental understanding of the processes in stirred vessels leads to losses in the order of US$10 billion per year due to non-optimal energy utilisation. Thus, there is a need to identify and quantify the operating hydrodynamic parameters that influence the quality of mixing. This can be done by using both experimental and simulation methods. Experimental methods have typically been used to study the hydrodynamics in mixing tanks, and the interpretation of the data can be enhanced if there is an understanding of the physics of the flow. In this regard, mathematical models based on experimental data or on the fundamental principles of fluid flow have been employed to obtain detailed information on the flow field, and this enhances the understanding of the mixing mechanisms involved. Computational fluid dynamics (CFD) method, which is based on partial differential equations describing fluid flow, has proved to be a useful tool for studies of system hydrodynamics, especially during the last ten years. Measurements of mixing time and circulation time can be used to investigate the macroscale mixing performance of a stirred tank resulting from the bulk fluid flow. These mixing parameters do not account for spatial variations, which are the characteristic features of stirred tanks. Information on these spatial variations can be obtained using high precision measurement techniques, such as the laser Doppler velocimetry (LDV). However, this technique is only applicable to translucent tanks and fluid, which are not suitable for most chemical engineering applications. These technical limitations can therefore preclude the use of such a method to study the influence of hydrodynamics on reactor performance in many industrial applications. Experimental methods, however, still provide useful data for validation of simulation results. The present review focuses on singlephase systems with minimal reference to multiphase systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study about the Effect of Turbines Pitched Blade Attack Angle on the Power Consumption of a Stirred Tank

In this study, the stirring mechanism of shear-thinning fluids benefiting from four blades in turbulent flow is considered. The fluid is studied inside a stirred cylindrical tank with a flat bottom. The height of fluid is equal to the cylinder’s diameter and the impeller is positioned centrally. A CFD simulation has been carried out and three-dimensional turbulent flow is numerically analyzed u...

متن کامل

A Study on Liquid-liquid Mixing in a Stirred Tank with a 6-Blade Rushton Turbine

The turbulent flow field generated in a baffled stirred tank was computed by large eddy simulation (LED) and the flow field was developed using the Sliding Mesh (SM) approach. In this CFD study, mixing times and power number have been determined for a vessel agitated by a 6-blade Rushton turbine. The predicted results were compared with the published experimental data. The satisfactory results ...

متن کامل

CFD Modeling of Gas-Liquid Hydrodynamics in a Stirred Tank Reactor

Multiphase impeller stirred tank reactors enhance mixing of reacting species used in a variety of chemical industries. These reactors have been studied based on Computational Fluid Dynamics (CFD) that can be used in the analysis, design and scale up of these reactors. Most of the researches done in this area are limited to single phase reactors, and a few remaining two phase flow investigat...

متن کامل

Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank

In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...

متن کامل

Cfd Analysis of Turbulence Effect on Reaction in Stirred Tank Reactors

Stirred tank reactors are one of the most commonly used equipments in industry for achieving mixing and reaction. Flow fields in a stirred reactor are obtained via computational fluid dynamics. In this work CFD is used for the simulation of a reactive flow process consisting of a second order reaction. The extent of reaction is found to depend on impeller speed and its position from the bottom ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009